Course Code:
EDEM 103
Course Period:
Autumn
Course Type:
Core
P:
2
Credits:
2
ECTS:
2
Course Language:
İngilizce
Course Coordinator:
Course Objectives:
The aim of this course is to discuss both fundamental concepts and theorems of numbers and algebra covered in mathematics curriculum and also the relationships between those concepts.
Course Content:

The properties and concepts under numbers and algebra domains in the mathematics curriculum (natural numbers, operations with natural numbers, decimals, percent, factors and multiples, sets, integers, operations with integers, rational numbers, ratio and proportion, exponents, radicals, algebraic expressions, equality and equations, linear equations, algebraic expressions and identities, inequalities); relationship between those concepts, discussion of mathematical concepts and use of multiple representations.

Course Methodology:
1. Lecture 2. Case study 3. Discussion 4. Demonstration 5. Group work 6. Microteaching 7. Problem solving
Course Evaluation Methods:
A. Supply type B. Multiple-choice test C. Incomplete D. True-False E. Oral exam F. Portfolio G. Performance type H. Report

## Vertical Tabs

### Course Learning Outcomes

 Learning Outcomes Program Outcomes Teaching Methods Assessment Methods 1) Explains concept of number and number systems. 2 1 A, E 2) Solves problems and proves theorems about numbers. 1, 2, 3, 4 1, 7 A, E 3) Uses multiple representations for rational numbers, decimals and percent. 1, 3 1 A, E 4) Explains concept of algebra. 1, 3 1 A, E 5) Solves algebra problems and proves theorems in algebra. 1, 2, 3, 4 1, 7 A, E

### Course Flow

 COURSE CONTENT Week Topics Study Materials 1 Natural numbers and their properties 2 Integers and their properties 3 Problems and proofs about integers 4 Rational and irrational numbers and their properties 5 Problems and proofs about real numbers 6 Decimals and percent 7 Ratio and proportion 8 Midterm 9 Evolution of algebra concept 10 Algebraic expressions and rules 11 Linear equations 12 Inequalities 13 Algebra problems 14 Algebra problems and proofs in algebra

### Recommended Sources

 RESOURCES Compulsory Eves, H. (1990). Foundations and fundamental concepts of mathematics. New York: Dover Recommended TÜBİTAK Popüler Bilim Yayınları

### Material Sharing

 COURSE MATERIALS Documents Handouts of in-class activities Assignments 1) Problem sets about numbers and algebra Exams Midterm and final exams

### Assessment

 ASSESSMENT IN-TERM STUDIES Quantity Percentage Midterm 1 40 Final 1 40 Assignment 2 20 Total 100 Contribution of Final Exam to Overall Grade 40 Contribution of In-term Studies to Overall Grade 60 Total 100

### Course’s Contribution to Program

 COURSE CONTRIBUTION TO PROGRAM OUTCOMES No Program Outcomes Level of contribution 1 2 3 4 5 1 Knows historical, cultural and scientific developments of the mathematical concepts covered in elementary school mathematics curriculum X 2 Applies fundamental mathematical and geometric concepts into other disciplines and real life situations X 3 Applies mathematical processes (e.g. problem solving, proving theorems, etc.) into given cases accurately. X 4 Plans mathematics teaching process in line with the elementary school curriculum’s vision, philosophy and goals X 5 Uses teaching strategies and techniques that are appropriate for students’ age, grade level, individual differences and readiness level X 6 Determines and applies appropriate strategies and materials to foster and evaluate students’ mathematical thinking skills. X 7 Uses and develops appropriate resources and materials to teach mathematics X 8 Monitors students’ learning process, development and achievement and assesses them by using appropriate assessment tools X 9 Improves professional knowledge by following recent issues in mathematics education X 10 Contributes to the development of mathematics education by doing scientific research X

### ECTS

 ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION Activities Quantity Duration (Hour) Total Workload (Hour) Course hours (including the exam week: 15 x total course) 15 2 30 Hours for off-the-classroom study (pre-study, practice) 15 1 15 Midterm 1 5 5 Assignment 2 1 2 Final 1 5 5 Total Workload 57 Total Workload / 25 (hours) 2,28 ECTS 2