Dersin Dili:
İngilizce
Dersin Amacı:
Vektor ve en temel Analitik Geometri (iki ve üç boyutta) kavramlarının bazı özellikleriyle beraber verilmesi
Dersin İçeriği:
Vektörler, vektörlerle lineer işlemler.Vektörlerin çarpımı. Öklid uzayının tanımı. Doğrular ve düzlemler. Çember ve küre. Eğrilerin ve yüzeylerin parametrizasyonu. Konikler ve kuadratikler, simetrileri ve sınıflandırılması. Dönüşümler, ortogonal (dikey) dönüşümler, benzerlikler ve tersinimler.
Dersin Öğretim Yöntemleri:
1: Anlatım, 2: Problem Çözme, 3: Kısa Sınav
Dersin Ölçme Yöntemleri:
A: Yazılı sınav, B: Ödev, C: Kısa sınav
Dikey Sekmeler
Dersin Öğrenme Çıktıları
Dersin Öğrenme Çıktıları | Program Öğrenme Çıktıları | Öğretim Yöntemleri | Ölçme Yöntemleri |
1) Vektör ve matrislerle işlem yapabilir. | 1,2,5 | A,B,C | |
2) doğru ve düzlemlerle ilgili problemleri çözebilir. | 1,2,5 | A,B,C | |
3) konikleri tanımlayabilir, konik denklemlerini elde edebilir. | 1,2,5 | A,B,C | |
4) genel kuadratic yüzeylerin teğet uzaylarının denklemlerini yazabilir. | 1,2,5 | A,B,C | |
5) kuadratik yüzeylerin özelliklerini kanonic denklemlerinden tanır. | 1,2,5 | A,B,C | |
6) genel kuadratik denklmeri kanonik forma indirebilir. | 1,2,5 | A,B,C |
Dersin Akışı
Hafta | Konular | Ön Hazırlık |
1 | Noktalar, yönlü parçalar,paralel ötelemeler, Vektörler, doğrudaş ve düzlemdeş vektörler | Ders Kitapları |
2 | Vektörlerle doğrusal operasyonlar, doğrusal bağımlılık,vektör ve nokta koordinatları |
Ders Kitapları |
3 | Vektörlerin skaler çarpımı, izdüşüm, kosinüs teoremi. Vektörel çarpım, düzlem oryantasyonları |
Ders Kitapları |
4 | Lagrange özdeşliği, alan, doğrudaş noktalar, karışık (üçlü) çarpım |
Ders Kitapları |
5 | Hacim, ikli vektör çarpımı. Afin ve Euclidean uzaylar |
Ders Kitapları |
6 | Eğriler ve yüzeyler, parametrik, açık ve kapalı denklemler, geometrik konum. Doğru ve düzlem denklemleri,normal vektörler |
Ders Kitapları |
7 | Doğru ve düzlemle ilgili geometrik sorular. Menelaos ve ceva teoremleri. Kesişim, açılar, çarpık doğrular, uzaklıklar, kalemler. | Ders Kitapları |
8 | Tekrar ve ara sınav |
Ders Kitapları |
9 | Çember ve küre, parametrik denklemler, kutupsal, silindirik ve küresel koordinatlar. |
Ders Kitapları |
10 | Bir doğru ile kesişim,sekant ve tanjant, normal, kutupsal doğru ve yüzey. |
Ders Kitapları |
11 | Konikler: elips ve hiperbolün kanonik denklemleri, odak noktaları ve köşeleri, asimtotlar. Doğrultman,ayrıksılık,parabol. Parametrik denklemler |
Ders Kitapları |
12 | İkincil dereceliler: elipsoitler, hiperboloitler, asimtotik koni, eliptik ve hiperbolik paraboloitler |
Ders Kitapları |
13 | Konik ve ikincil dereceliler: afin Gauss sınıflandırmaları teoremi |
Ders Kitapları |
14 | Tekrar ve ara sınav |
Ders |
Kaynaklar
Ders Notu |
I. Vaisman, “Analytical Geometry”
H. İ. Karakaş, “Analytic Geometry” |
Diğer Kaynaklar |
V. Gutenmacher and N. B. Vasilyev, Lines and Curves, Birkhauser 2004, QA 459.G983 2004. C. B. Boyer, History of Analytic Geometry, Dover 1956, QA 551.B813 2004. |
Materyal Paylaşımı
Dökümanlar | |
Ödevler | |
Sınavlar |
Değerlendirme Sistemi
YARIYIL İÇİ ÇALIŞMALARI | SAYI | KATKI YÜZDESİ |
Ara Sınav | 2 | 100 |
Kısa Sınav | ||
Ödev | ||
Toplam | 100 | |
Finalin Başarıya Oranı | 30 | |
Yıl içinin Başarıya Oranı | 70 | |
Toplam | 100 |
Dersin Program Çıktılarına Katkısı
No | Program Öğrenme Çıktıları | Katkı Düzeyi | ||||
1 | 2 | 3 | 4 | 5 | ||
1 | Matematiğin araştırma alanları (analiz, cebir, diferensiyel denklem ve geometri) için altyapı niteliğindeki limit, türev, integral, mantık, lineer cebir ve ayrık matematik konularında hesap yapabilme becerisi ne sahip olur. | x | ||||
2 | Matematiğin araştırma alanları hakkında temel bir bilgi birikimine ulaşır. | x | ||||
3 | Matematiğin araştırma alanları arasında ilişkiler kurabilme ve yorumlar. | x | ||||
4 | Matematik problemlerini tanımlama, formüle etme ve çözme becerisine sahip olur. | x | ||||
5 | Mesleki etik ve sorumluluk bilincindedir. | x | ||||
6 | Etkin iletişim kurma becerisine sahip olur. | x | ||||
7 | İlgi duyduğu alanlarda kendini geliştirir. | x | ||||
8 | Bilişim teknolojilerini tanıma, bunlardan uygun araçları seçme ve kullanma becerisine sahip olur. | x | ||||
9 | Yaşam boyu öğrenme bilincine sahip olur. | x |
AKTS İş Yükü Tablosu
Etkinlik | SAYISI |
Süresi (Saat) |
Toplam İş Yükü (Saat) |
Ders Süresi (14x toplam ders saati) | 14 | 5 | 70 |
Sınıf Dışı Ders Çalışma Süresi (Ön çalışma, pekiştirme) | 14 | 5 | 70 |
Ara Sınav (Bireysel çalışma dahil) | 2 | 10 | 20 |
Kısa Sınav | - | - | - |
Ödev | - | - | - |
Final (Bireysel çalışma dahil) | 1 | 10 | 10 |
Toplam İş Yükü | 170 | ||
Toplam İş Yükü / 25 (s) | 6,8 | ||
Dersin AKTS Kredisi | 7 |